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1 Introduction

This project is a research effort that helps define thermal infrared (IR) imaging as a diagnostic tool
in early detection of breast cancer, which can be used as a complementary to traditional mammog-
raphy. One of the popular methods for breast cancer detection is to make comparisons between
contralateral images. When the images are relatively symmetrical, small asymmetries may indi-
cate a suspicious region. In IR imaging, asymmetry analysis normally needs human interference
because of the difficulties in automatic segmentation. In order to provide a more objective diagno-
sis result, we proposed an automatic approach to asymmetry analysis in thermograms. It includes
automatic segmentation and supervised pattern classification. Experiments have been conducted
based on images provided by Elliott Mastology Center (Inframetrics 600M camera) and Bioyear,
Inc. (Microbolometer uncooled camera).

2 Body

The application of IR imaging in breast cancer study starts as early as 1961 when Williams and
Handley first published their results in the Lancet [11]. However, the premature use of the tech-
nology and its poorly controlled introduction into breast cancer detection in the 70s have led to its
early demise [9]. IR-based diagnosis was criticized to generate a higher false-positive rate than
mammogram, and thus was not recommended as a standard modality for breast cancer detection.
Therefore, despite its deployment in many areas of industry and military, IR usage in medicine
has declined [8]. Three decades later, several papers and studies have been published to reappraise
the use of IR in medicine [9, 8] for the following three reasons: 1) We have much more improved
infrared technology. New generations of IR cameras have been developed with much enhanced
accuracy; 2) We have much better capabilities in image processing. Advanced techniques includ-
ing image enhancement, restoration and segmentation have been effectively used in processing IR
images; and 3) We have a deeper understanding of IR images based on the patho-physiological
approach.

The main objective of this work is to evaluate the viability of IR imaging as a non-invasive
imaging modality for early detection of breast cancer so that it can be performed both on the
symptomatic and asymptomatic patients and can thus be used as a complementary to traditional
mammography. This report summarizes how the identification of the asymmetry can be automated
using the image segmentation, feature extraction and pattern recognition techniques. We investi-
gate different features that contribute the most towards the detection of asymmetry. This kind of
approach would help reduce the false positive rate of the diagnosis and increase chances of disease
cure and survival.




2.1 Background Study
2.1.1 Measuring the Temperature of Human Body

Temperature is a long established indicator of health. The Greek physician, Hippocrates, wrote
in 400 B.C. “In whatever part of the body excess of heat or cold is felt, the disease is there to
be discovered [16].” The ancient Greeks immersed the body in wet mud and the area that dried
more quickly, indicating a warmer region, was considered the diseased tissue. The use of hands
to measure heat-emanating form the body remained well into the sixteenth and the seventeenth
centuries. It wasn’t until Galileo, who made a thermoscope from a glass tube, that some form of
the temperature sensing device was developed, but it did not have a scale. It is Fahrenheit and later
Celsius who have fixed the temperature scale and proposed the present day clinical thermometer.
The use of liquid crystals is another method of displaying skin temperature. Cholesteric esters can
have the property of changing colors with temperature and this was established by Lehmann in
1877. 1t was involved in use of elaborative panels that encapsulated the crystals and were applied
to the surface of the skin, but due to large area of contact, they affected the temperature of the skin.
All the methods discussed above are contact based.

Major advances over the past 30 years have been with infrared (IR) thermal imaging. The
astronomer, Sir William Herschel, in Bath, England discovered ﬂ}e existence of infrared radiation
by trying to measure the heat of the separate colors of the rainbow spectrum cast on a table in the
darkened room. He found the highest temperature appear beyond the red end of the spectrum. He

reported to the Royal society as Dark Heat in 1800, which is eventually the Infrared portion of
~ the spectrum. Infrared radiation occupies the region between visible and microwaves. All objects
in the universe emit radiations in the IR region of the spectra as a function of their temperature.
As an object gets hotter, it gives off more intense infrared radiation, and it radiates at a shorter
wavelength [8]. At moderate temperatures (above 200°F), the intensity of the radiation gets high
enough so that the human body can detect that radiation as heat. At high enough temperatures
(above 1200°F), the intensity gets high enough and the wavelength gets short enough so that the
radiation crosses over the threshold to the red end of the visible light spectrum. Human eye cannot
detect IR rays, but they can be detected by using the thermal infrared cameras and detectors.

2.1.2 Metabolic Activity of Human Body and Cancer Cells

Metabolic process in a cell can be briefly defined as the sum total of all the enzymatic reactions
occurring in the cell. It can be further elaborated as a highly coordinated, purposeful activity
in which many sets of interrelated multi enzyme systems participate exchanging both matter and
energy between the cell and its environment. Metabolism has four specific functions: 1) To obtain
chemical energy from the fuel molecules; 2) To convert exogenous nutrients into the building
blocks or precursor of macromolecular cell components; 3) To assemble such building blocks into
proteins, nucleic acids, lipids and other cell components; and 4) To form and degrade biomolecules
required in specialized functions of the cell.

Metabolism can be divided into two major phases, Catabolism and Anabolism. Catabolism
is the degradative phase of metabolism in which relatively large and complex nutrient molecules




(carbohydrates, lipids and proteins) are degraded to yield smaller, simpler molecules such as lactic
acid, acetic acid, CO,, ammonia or urea. Catabolism is accompanied by conservation of some of
the energy of the nutrient in the form of phosphate bond energy of adenosine triphosphate (ATP).
Conversely, Anabolism is the building up phase of metabolism, the enzymatic biosynthesis of such
molecular components of such molecular components of cells as nucleic acids, proteins, lipids and
carbohydrates from their simple building block precursors. Biosynthesis of organic molecules form
simple precursors requires input of chemical energy which is furnished by ATP generated during
catabolism. Each of these pathways is promoted by a sequence of specific enzymes catalyzing
consecutive reactions. The energy produced by the metabolic pathways is utilized by the cell for
its division. Cells undergo mitotic cell division, a process in which a single cell divide into many
cells, and into tissues and further into the growth of the multicellular organs. When cells divide,
each resultant part is a complete relatively small cell. Immediately after division the newly formed
cells grow rapidly soon reaching the size of the original cell. In humans, growth occurs through
mitotic cell division with subsequent enlargement and differentiation of the reproduced cells into
organs. Cancer cells also grow similarly but lose the ability to differentiate into organs. So, cancer
cells are defined as actively dividing undifferentiated mass of cells called tumors.

Cancer cells result from permanent genetic change in a normal cell triggered by some external
physical agents such as chemical agents, X-rays, UV rays, etc. They tend to grow aggressively and
do not obey normal pattern of tissue formation. Cancer cells have a distinctive type of metabolism.
Although they possess all the enzymes required for most of the central pathways of metabolism,
cancer cells of nearly all types show an anomaly in the glucose degradation pathway (viz. Gly-
colysis). The rate of oxygen consumption is somewhat below the values given by normal cells.
However the malignant cells tend to utilize anywhere from 5-10 times as much glucose as normal
tissue and convert most of it into lactate instead of pyruvate (lactate is a low energy compound
whereas pyruvate is a high energy compound). The net effect is that in addition to the generation
of ATP in mitochondria from respiration, there is a very large formation of ATP in extramito-
chondrial compartment from glycolysis. The most important effect of this metabolic imbalance
in cancer cells is the utilization of a large amount of blood glucose and release large amounts of
lactate into blood. The lactate so formed is recycled in the liver to produce blood glucose again.
Since the formation of blood glucose by the liver requires 6 molecules of ATP whereas breakdown
of glucose to lactate produces only 2 ATP molecules, the cancer cells are looked upon as metabolic
parasites dependent on the liver for a substantial part of energy. Large masses of cancer cells thus
can be a considerable metabolic drain on the host organism. In addition to this, the high metabolic
rate of cancer cells causes an increase in local temperature as compared to normal cells. Local
metabolic activity ceases when blood supply is stopped since glycolysis is an oxygen dependent
pathway and oxygen is transported to the tissues by the hemoglobin present in the blood, thus
blood supply to these cells is important for them to proliferate. The growth of a solid tumor is
limited by the blood supply. If it were not invaded by capillaries a tumor would be dependent on
the diffusion of nutrients from its surroundings and could not enlarge beyond a diameter of a few
mm. In contrast to this, to grow further the tumor cells stimulate the blood vessels to form a cap-
illary network that invades the tumor mass. This phenomenon is popularly called as angiogenesis

which is a process of vascularization of a tissue involving the development of new capillary blood
vessels.

Vascularization is a growth of blood vessels into a tissue with the result that the oxygen and
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nutrient supply is improved. Vascularization of tumors is usually a prelude to more rapid growth
and often to metastasis (advanced stage of cancer). Vascularization seems to be triggered by angio-
genesis factors that stimulate endothelial cell proliferation and migration. In context to this paper
the high metabolic rate in the cancer cells and the high density of packaging makes it a key source
of heat concentration (since the heat dissipation is low) thus enabling thermal infrared imaging as
a viable technique to visualize the abnormality.

2.1.3 Early Detection of Breast Cancer

There is a crucial need for early breast cancer detection. Research has shown that if detected earlier
(tumor size less than 10mm), the breast cancer patient has an 85% chance of cure as opposed to
10% if the cancer is detected late [12].

Different kinds of diagnostic imaging techniques exist in the field of breast cancer detection.
The most popularly used method presently is X-ray mammography. The drawback of this tech- -
nique is that it is invasive and experts believe that electromagnetic radiations can also be a trig-
gering factor for cancerous growth. Because of this, periodic inspection might have a negative
effect on the patient’s health. Research shows that the mammogram sensitivity is higher for older
women (age group 60-69 years) at 85% compared with younger women (<50 years) at 64% [12].
A new study in a British medical journal (The LANCET [14]) has asserted that there is no reliable
evidence that screening with mammography for breast cancer reduces mortality. They show that
screening actually leads to more aggressive treatment, increasing the number of mastectomies by
about 20% and the number of mastectomies and tumorectomies by about 30%.

In contrast to this IR imaging uses a non-invasive imaging technique as the diagnostic tool.
The main source of infrared rays is heat emitted from different bodies whose temperature is above
absolute zero. Thus a thermogram of a patient provides the heat distribution in the body. The
cancerous cells, due to high metabolic rates, are at a higher temperature than the normal cells
around it. Thus the cancer cells can be imaged as hotspots in the infrared images. The thermogram
provides more dynamic information of the tumor since the tumor can be small in size but can be
fast growing making it appear as a high temperature spot in the thermogram [5, 17]. However, this
is not the case in mammography, in which unless the tumor is beyond certain size, it cannot be
imaged as X-rays essentially pass through it unaffected. This qualifies IR imaging as an effective
diagnostic tool for early detection of breast cancer. Keyserlingk et al. [9] reported that the average
tumor size undetected by thermal imaging is 1.28cm and 1.66cm by mammography. It is also
reported that the results of thermography can be correct 8-10 years before mammography can
detect a mass in the patient’s body [3, 13].

2.2 Asymmetric Analysis in Breast Cancer Detection

Making comparisons between contralateral images are routinely done by radiologists. When the
images are relatively symmetrical, small asymmetries may indicate a suspicious region. This is the
underlying philosophy in the use of asymmetry analysis for mass detection in breast cancer study
[4]. Unfortunately, due to various reason like short of radiologists, fatigue, carelessness, or simply




because of the limitation of human visual system, these small asymmetries might not be easy to
detect. Therefore, it is important to design an automatic approach to eliminate human factors.

There have been a few papers addressing techniques for asymmetry analysis of mammograms
[4, 15, 18, 19, 20, 21]. [6, 10] recently analyzed the asymmetric abnormalities in infrared images.
In their approach, the thermograms are segmented first by operator. Then breast quadrants are
derived automatically based on unique point of reference, i.e. the chin, the lowest, rightmost and
leftmost points of the breast.

This project proposed an automatic approach to asymmetry analysis in thermograms. It in-
cludes automatic segmentation and pattern classification. Hough transform is used to extract the
four feature curves that can uniquely segment the left and right breasts. The feature curves include
the left and the right body boundary curves, and the two parabolic curves indicating the lower
boundaries of the breasts. Upon segmentation, different pattern recognition techniques are applied
to identify the asymmetry.

Both segmentation and classification results are shown on images provided by Elliott Mastol-
ogy Center (Inframetrics 600M camera) and Bioyear, Inc. (Microbolometer uncooled camera).

2.2.1 Automatic Segmentation

Edge image is first derived by using Canny edge detector [1]. The standard deviation is chosen to
be equal to 2.5 so that only strong edges are detected.

There are four dominant curves appeared in the edge image which we called the feature curves:
the left and right body boundaries, and two lower boundaries of the breasts. The body boundaries
are easy to detect. Difficulties lie in the detection of the lower boundaries of the breasts. We
observe that the breast boundaries are generally in parabolic shape. Therefore, Hough transform
[7] is used to detect the parabola.

Segmentation is based on three key points: the two armpits (Pr, Pr) derived from the left
and right body boundaries by picking up the point where the largest curvature occurs, and the
intersection (O) of the two parabolic curves derived from the lower boundaries of the breasts. The

vertical line that goes through point O and is perpendicular to line Py, Px, is the one used to separate
the left and right breasts.

The first set of testing images are obtained using the Inframetrics 600M camera, with a thermal
sensitivity of 0.05°K. The image are collected at Elliott Mastology Center. Results from two testing
images (Ir, nb) are shown in Figure 1, that includes the intermediate results from edge detection,
feature curve extraction, to segmentation. From the figure, we can see that Hough transform can
derive the parabola at the accurate location.

Another set of images are obtained using Microbolometer uncooled camera, with a thermal
sensitivity of 0.05°K. Some examples of the segmented images are shown in Figure 2.




Figure 1: Segmentation results of two images. Left: results frem Ir. Right results fram nb Frena
top to bottom: original image, edge image, four feature curves, segments.

2.2.2 Asymmetry Identification by Unsupervised learning

Pixel values in a thermogram represent the thermal radiation resulting from the heat emanates
from the human body. Different tissues, organs and vessels have different amount of radiation.
Therefore, by observing the heat pattern, or in another word, the pattern of ti}e paxei vaiue we
should be able to discover the 3bno§maiztles if there are any.

Usually, in pattern classification algonthms, a set of training data are given to denva the deci-
sion rule. All the samples in the training set have been correctly classified. The decision rule is
then applied to the testing data set where samples have not been classified yet. This classiﬁcation
technique is also called supervised learning. In unsupervised learning, however, data sets are not

divided into training sets or testing sets. No a-priori knowledge is known abeut whlch class each
sample belongs to.




Figure 2: Hough transform based image segmentation. Top: segments of a cancerous image.
Bottom: segments of a non-cancerous image. From left to right: the original TIR image, the edge
image using Canny edge detector, the segmentation based on Hough transform.

In asymmetry analysis, none of the pixels in the segment knows its class in advance, thus there
will be no training set or testing set. Therefore, this is an unsupervised learning problem. We use
k-means algorithm to do the initial clustering. k-means algorithm is described as follows:

1. Begin with an arbitrary set of cluster centers and assign samples to nearest clusters;
2. Compute the sample mean of each cluster;
3. Reassign each sample to the cluster with the nearest mean;

4. If the classification of all samples has not changed, then stop, else go to step 2.

After each sample is relabeled to a certain cluster, the cluster mean can then be calculated. The
segmented image can also be displayed in labeled format. From the difference of mean distribution,
we can tell if there is any asymmetric abnormalities.

Figure 3 provides the histogram of pixel value from each segment that generated in Figure 1
with 10-bin setup. We can tell just from the shape of the histogram that Ir shows a more apparent
abnormalities than nb. However, histogram only reveals global information. Figure 4 displays the
classification results for each segment in its labeled format. Here, we choose to use four clusters.
The figure also shows the mean difference of each cluster in each segmented image. From Fig. 4,
we can clearly see the much bigger difference shown in the mean distribution or image I which
can also be observed from the labeled image.

2.2.3 Asymmetry Identification Using Supervised Learning based on Feature Extraction

Feature extraction is performed on the segmented images. The aim of this research is to identify
the effectiveness of the features in contributing towards the asymmetry analysis.

As discussed earlier, TIR imaging is a functional imaging technique representing thermal in-
formation as a function of intensity. The TIR image is essentially a pseudo-colored image with a
different color assigned to different degree of temperature.
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Figure 3: Histogram of the left and right segments. Top: results from Ir. Bottom: results from nb.
From left to right: the segments, histogram of the left segment, histogram of the right segment.

Figure 4: Labeled image and the profile of mean for each cluster. Left: results from Ir. Right:
results from nb. Top: labeled image. Bottom: average pixel value profile of each cluster




The distribution of different intensities can now be quantified by calculating some high-order
statistics as feature elements. We design the following features to form the feature space:

Moments of the intensity image: The intensity component of the image directly corresponds
to the thermal energy distribution in the respective areas. The histogram describing the
intensity distributions essentially describes the texture of the image. The moments of the
histogram gives the statistical information of the texture of the image. Figure 3 shows the
intensity distribution of the cancerous and non-cancerous images. The four moments, mean,
variance, skewness, and kurtosis are taken as

N

Mean#:z—i,—;pj o
, X
Variance 02 = o1 ;(pj - p)? )
Skewness = — XN:[M}3 3)
N peril)
Kurtosis = 1 EN:(EEZE)‘1 4
Ng o

where p; is the probability density of the jth bin in the histogram, and N is the total number
of bins.

The peak pixel intensity of the correlated image: The correlated image between the left and
right breasts is also a good indication of asymmetry. We use the peak intensity of the corre-
lated image as a feature element since the higher the correlation value, the more symmetric
the two breast segments.

Entropy: It measures the uncertainty or the information contained in the segmented images.
The more equal the intensity distribution, the more information. Therefore, the segment with
hot spots should have a lower Entropy.

N
Entropy H(X) = — Z p;logp; )
Jj=1

Joint Entropy: The higher the joint entropy between the left and right breast segments, the
more symmetric they are supposedly to be, and the less possible of the existence of tumor.

Nx Ny
Joint EntropyH(X,Y) = Z Z pijlog(pij) (©)

i=1 j=1




where p;; is the joint probability density, Nx and Ny are the number of bins of the mtensﬁy
histogram of images X and Y respectively .

From the above set of features derived from the testing images, the existence of asymmetry is
decided by calculating the ratio of the feature from the left segment to the feature from the right
segment. The closer the value to 1, the more correlated the features or ‘the less asymmetric the
segments. Classic pattern classification techniques like the maximum posterior probability and the
kNN classification [2] can be used for the automatic classification of the images.

Figure 5 shows the 3-D histogram of the thermal distribution described in the intensity com-
ponent of the cancerous (ca) and non-cancerous (nm) images. From the graphs, we observe that
the ca image is more asymmetrical than the nm image. This asymmetry can be quantified by cal-
culating the statistical moments of the thermograms. Four moments of this histogram are derived
to describe the texture of the image. Table 1 describes the typical moments for the cancerous and
non-cancerous images.

rRv—y

Figure 5: The left figure show the intensity distribution of a cancerous image and the right figure

shows the same for a non-cancerous image. The cancerous image is more asymmetrical than the
noN-cancerous one.

Moments CAancerous ROR-CAncerous
Left | Right | Left | Right
Mean 0.0010 | 0.0008 | 0.0012 | 0.0010

Variance (10~°) | 2.0808 | 1.1487 | 3.3771 | 2.7640
Skewness (107°) | 2.6821 | 1.1507 | 4.8489 | 4.5321
Kurtosis (10~°) | 1.0481 | 0.3459 | 2.1655 | 2.3641

Table 1: Moments of the histogram.

Other features. include the peak correlation coefficient, Entropy, and mutual information. The
typical values of the cancerous images and non-cancerous images are tabulated in Table 2. The
asymmetry can be clearly stated with a close observation of the above feature values. We used 6
normal patient thermograms and 18 cancer patient thermograms. With a larger database, a trainig
feature set can be derived and supervised learning algorithms like discriminant function or k-NN
classification can be implemented for a fast, effective, and automated classification.

Figure 6 evaluates the effectiveness of the features used. The first data point along the -
axis indicates entropy, the second to the fifth points indicate the four statistical moments (means,
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Feature cancerous non-cancerous
Correlation x10% 2.35719 x 108
Joint Entropy 9.0100 17.5136
Entropy Left Right | Left Right
1.52956 | 1.3033 | 1.70684 | 1.4428

Table 2: Entropy and correlation values.

variance, skewness, and kurtosis). The y-axis shows the closeness metric we defined as

Bilateral ratio closeness to 1
_ i feature value from left segment 1| (?)
i feature value from right segment

Bilatural matho clossness to 1
; 2
T T
-

1 '15 ; 2‘5 3 3‘8 ; ;5 5
Different features

Figure 6: Performance evaluation of different feature elements. Solid line: non-cancerous image;
- Dash line: cancerous image. The five data points along the z-axis indicate (from left to right):

entropy, mean, variance, skewness, kurtosis.

From the figure, we observe that, the high-order statistics are the most effective features to

measure the asymmetry, while low-order statistics (mean) and entropy do not assist asymmetry
detection.

3 Key Research Accomplishment

o To the best of our knowledge, this project is the first effort in the design of automatic segmen-
tation algorithm in TIR images for breast cancer detection. We use Hough transform coupled
with Canny edge detector to identify four feature curves used to segment the breasts.

¢ Upon segmentation, we developed different pattern recognition techniques to identify the
asymmetry. We proposed two approaches, including the unsupervised learning and feature
comparison. Although feature comparison shows advantageous over unsupervised learning,
it needs a good training set in order to achieve high accuracy.
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e The proposed algorithms have been implemented and evaluated on two independent data
sets: images provided by Elliott Mastology Center (Inframetrics 600M camera) and Bioyear,
Inc. (Microbolometer uncooled camera).

4 Reportable Outcomes

e Manuscripts

1. P. T. Kuruganti, H. Qi, “Asymmetry analysis in breast cancer detection using thermal
infrared images,” EMBS-BMES, October 2002.

2. H. Qi, Z. Qi, C. Wang, “Breast cancer identification through shape analyszs in thermal
texture maps,” EMBS-BMES, October 2002.

3. H. Qi, P. T. Kuruganti, Z. Liu, “Early detection of breast cancer using thermal tex-
ture maps,” IEEE International Symposium on Biomedical Imaging: Macro to Nano,
Washington, D. C., July, 2002.

4. H. Qi, “Feature selection and kNN fusion in molecular classification of multiple tu-
mor types,” International Conference on Mathematics and Engineering Techniques in
Medicine and Biological Sciences (METMBS), Las Vegas, June, 2002.

5. H. Qi, J. F. Head, “Asymmetry analysis using automatic segmentation and classifica-
tion for breast cancer detection in thermograms,” IEEE Engineering in Medicine and
Biology Society Annual Conference (EMBS), Istanbul, Turkey, October, 2001.

o Abstracts

1. H. Qi, “Detecting breast cancer from thermal infrared images by asymmetry analysis,”
Era of Hope, Department of Defense Breast Cancer Research Program Meeting, vol.
1, page P15-10, Orlando, FL, September 25-28, 2002.

e Presentations

L. P. T. Kuruganti, H. Qi, “Asymmetry analysis in breast cancer detection using thermal
infrared images,” EMBS-BMES, October 2002.

2. H. Qi, Z. Qi, C. Wang, “Breast cancer identification through shape analysis in thermal
texture maps,” EMBS-BMES, October 2002.

3. H. Qi, P. T. Kuruganti, “Detecting Breast Cancer from Thermal Infrared Images by
Asymmetry Analysis,” Era of Hope, Department of Defense Breast Cancer Research
Program Meeting, Orlando, FL, September 25-28, 2002.

4. H. Qi, P. T. Kuruganti, Z. Liu, “Early detection of breast cancer using thermal tex-
ture maps,” IEEE International Symposium on Biomedical Imaging: Macro to Nano,
Washington, D. C., July, 2002.

5. H. Qi, “Feature selection and kNN fusion in molecular classification of multiple tu-
mor types,” International Conference on Mathematics and Engineering Techniques in
Medicine and Biological Sciences (METMBS), Las Vegas, June, 2002.
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6. H. Qi, Z. Liu, “Use of Thermal Texture Maps (TTM) in Breast Cancer Detection -
Bioyear Concept,” From Tanks to Tumors: A Workshop on the Applications of IR Imag-
ing and Automatic Target Recognition (ATR) Image Processing for Ear‘ly Detection of
Breast Cancer, Arlington, VA, December 4-6, 2001.

7. H. Qi, J. F. Head, “Asymmetry analysis using automatic segmentation and classifica-
tion for breast cancer detection in thermograms,” IEEE Engineering in Medicine and
Biology Society Annual Conference (EMBS), Istanbul, Turkey, October, 2001.

e Degrees obtained that are supported by this award

1. Phani Teja Kuruganti, M.S. Student, Expected: May 2003.

5 Conclusions

This project develop a computer-aid approach for automating the asymmetry analysis of the ther-
mograms. This kind of approach will help the diagnostics as a useful second opinion. The use of
TIR images for breast cancer detection and the advantages of thermograms over tr&ditional mam-
mograms are studied. From the experimental results, it can be observed that the Hough transform
can be effectively used for breast segmentation. We propose two pattern classification algorithms,
the unsupervised learning using kmeans and the supervised learning using kNN based on feature
extraction. Experimental results show that feature extraction is a valuable approach to extract the
signatures of asymmetry, especially the joint entropy. With a larger database, supérvised pattern
classification techniques can be used to attain more accurate classification. These kind of diag-
nostic aids, especially in a diseases like breast cancer where the reason for the occurrence is not
totally known, will reduce the false positive diagnosis rate and increase the survival rate among the
patients since the early diagnosis of the disease is more curable than in a later stage.
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Asymmetry Ana,}ysis in Breast Cancer Detection Using Thermal Infrared Images*

Phani Teja Kuruganti!, Hairong Qi

Abstract— Automated diagnostic tools always provide the
doctors with the very valuable second opinion during dis-
ease diagnosis. This paper discusses an automated ap-
proach for breast cancer detection using Thermal Infrared
(TIR) images. Breast cancer is a disease in which only
the early diagnosis increases the survival hope. The can-
cer cells with their higher metabolic rate are hotter than
the normal cells and this property makes the cancerous tu-
mors appear as hotspots in the TIR images. The existence
of asymmetry in temperature distribution indicates the ex-
istence of tumor. In this paper, we initially segment the
breast part of the TIR image using the Hough transform
of a parabola. Upon segmentation, different features are
extracted from the breast segments. Comparison of these
features is done to detect any asymmetry and thus classify
the image as cancerous or non-cancerous. The segmenta-
tion and feature extraction are performed on the images
obtained from Bioyear Inc.

I. INTRODUCTION

Different kinds of diagnostic imaging techniques exist in
the field of breast cancer detection. In contrast to tradi-
tional invasive X-ray imaging, we use a non-invasive imag-
ing technique, called TIR imaging, as the diagnostic tool.
The cancerous cells, due to their high metabolic rates, are
at a higher temperature than the normal cells around it.
Thus the cancer cells can be imaged as hotspots in. the
infrared images. The thermogram can provide more dy-
namic information of the tumor since the tumor can be
small in size but can be fast growing making it appear as
a high temperature spot in the thermogram [1], [7]. Key-
serlingk et al. [4] reported that the average tumor size
undetected by thermal imaging is 1.28cm and 1.66cm by
mammography. It is also reported that the results of ther-
mography can be correct 8-10 years before mammography
can detect a mass in the patient’s body [2], [5]. Since it
is not practically possible to have the tumor symmetri-
cally in both the breasts, exploiting this asymmetry can
provide accurate diagnosis result. The main objective of
this work is to evaluate the viability of TIR imaging as a
non-invasive breast cancer imaging modality. This paper
discusses about how the identification of the asymmetry
can be automated using different techniques. '

*The research is supported by the U.5. Army Medical Acquisition
Activity under grant DAMD17-01-1-0640

Electrical and Computer Engineering Department, University of
Tennessee, Knoxville, TN 37996, USA, Email: {teja,hqi}Qutk.edu

Hough Transform Segmenting the
Original Tmage Based Image Left and the
Segmentation Right Part of Breast

Asymetry Analysis Feature
for the Existence of A
Abnormality Extraction

Fig. 1. Algorithm for the asymmetry analysis.

II. ApPPROACH

Figure 1 shows a block diagram of different steps that
are implemeted in this paper: (1) Edge detection and
Hough transform based image segementation; (2) Feature
extraction; and (3) Asymmetry analysis to detect the ex-
istence of asymmetry automatically.

s Hough Transform Based I'mage Segmentatwn* Hough
transform is an image segmentation technique applied to
the image if particular geometric shapes are looked for.
The lower part of the edge image of patient’s breasts is
approximated to the shape of a parabola[6]. Thus, Hough
transform for the parabola [3] is used to segment the
breasts. Figure 2 shows some examples of the segmented
images.

o Feature Extraction: Feature extraction is performed on
the segmented pseudo-colored TIR images. The aim of
this research is to identify the effectiveness of the features
in contributing towards the asymmetry analysis.

— Moments of the intensity image: The moments of the
histogram gives the statistical information of the texture
of the image. The four moments, mean, variance, skew-
ness, and kurtosis are taken as features. .

— The peak pizel intensity of the correlated image: We
use the peak intensity of the correlated image as a feature
element since the higher the correlation value, the more
symmetric the two breast segments.

— Entropy: It measures the uncertainty or the informa-
tion contained in the segmented images. The more equal
the intensity distribution, the more entropy. Therefore,
the segment with hot spots should have a lower Entropy.

— Joint Entropy: The higher the joint entropy between
the left and right breast segments, the more the symmetry.
o Asymmetry Analysis: From the above set of features
derived from the testing images, the existence of asymme-
try is decided by calculating the ratio of the feature from
the left and right segment. The closer the value to 1, the
more correlated the features or the less asymmetric the
segments.




Fig. 2. Hough transform based image segmentation. Top: cancerous
image. Bottom: non-cancerous image. From left to right: the
original TIR image, the edge image using Canny edge detector,
the segmentation based on Hough transform.

Moments

cancerous non-cancerous

Teft | Right | Left | Right

Mean 0.0010 | 0.0008 | 0.0012 | 0.0010

Variance (10-°) | 2.0808 | 1.1487 | 3.3771 | 2.7640

Skewness (10-°) | 2.6821 | 1.1507 | 4.8480 | 4.5321

Kurtosis (10'8) 1.0481 | 0.3459 | 2.1655 | 2.3641
TABLE I

MOMENTS OF THE HISTOGRAM.

Feature

cancerous NON-CANCErous
Correlation 2.500 x 10° 2.357 x 10°
Joint Entropy 9.0100 17.5136
Entropy Left Right | Left Right
1.52956 | 1.3033 | 1.70684 | 1.4428
TABLE II

ENTROPY AND CORRELATION VALUES.

III. EXPERIMENTAL RESULTS AND ANALYSIS

The testing images are obtained from Bioyear Inc., with
a sensitivity of 0.05 degree celsius. Figure 2 shows the
segmentation results.

The typical values of the cancerous images and non-
cancerous images are tabulated in Table II. The asymme-
try can be clearly stated with a close observation of the
above feature values. We used 6 normal patient thermo-
grams and 18 cancer patient thermograms.

Figure 3 evaluates the effectiveness of the features used.
The first data point along the z-axis indicates entropy,
the second to the fifth points indicate the four statistical
moments (means, variance, skewness, and kurtosis). The
y-axis shows the closeness metric we defined as

Bilateral ratio closeness to 1
feature value from left segment 1] (1)

feature value from right segment

From the figure, we observe that the high-order statistics

Fy

| —————

Fig. 3. Performance evaluation of different feature elements. Solid
line: non-cancerous image; Dash line: cancerous image. The
five data points along the z-axis indicate (from left to right):
entropy, mean, variance, skewness, kurtosis.

are the most effective features to measure the asymmetry,
while low-order statistics (mean) and entropy do not assist
asymmetry detection.

IV. CoONCLUSION

This paper describes a computer based approach for
automating the asymmetry analysis of the thermograms.
From the experimental results, it can be observed that the
Hough transform can be effectively used for breast seg-
mentation and the derived features can be used for asym-
metry analysis. These kind of diagnostic aids, especially
in a diseases like breast cancer where the reason for the
occurence is not totally known, will reduce the false pos-
itive diagnosis rate and increase the survival rate among
the patients since the early diagnosis of the disease is more
curable than in a later stage. ‘
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Breast Cancer Identification through Shape Analysis in Thermal Texture Maps

Hairong Qi Zhongqi Liu?, Chen Wang?

Abstract—This paper proposes an automated approach to
the study of metabolic activities within a human body using
thermal infrared (TIR) imaging. It uses early detection
of breast cancer as an example to show the effectiveness
of the approach. Different shape analysis parameters are
employed in the development.

I. INTRODUCTION

In an earlier paper [2], we described the usage of thermal
infrared imaging (TIR) in early detection of breast cancer.
We used the term thermal tezture maps to represent the
images captured from TIR imaging. A thermal-electric
analog was used to analyze a thermal system to avoid
solving the inverse problem of Pennes’ bio-heat equation.
Based on this analog, the depth of the heat source can
be estimated by looking for the half power point through
slicing. If we assume the distribution of the surface tem-
perature can be modeled as Gaussian, then we can slice
the Gaussian from top to bottom at a fixed interval. The
increment of the radius in the horizontal direction between
adjacent slices would not have dramatic change until the
half power point is crossed. Slicing is in essence a thresh-
olding process, where all pixels with a temperature higher
than the slicing temperature (the threshold) are assigned
a pseudo-color white. Therefore, by slicing (decreasing)
the surface temperature at a certain degree per step, and
by observing the growth pattern of the white pixels, we
can find the half power point.

The concept has helped tremendously in understand-

ing the metabolic activities undergoing within the human” -

body. Besides measuring the depth of the heat source,
slicing can also reveal the growth pattern of the white
pixels. For example, the pixels of lymph nodes and tu-

mors should grow in a circular pattern, while the growth

pattern of blood vessel is along the direction of the blood
vessel. The technique and the resulting apparatus have
been patented [1]. The system has been used in early
detection of breast cancer. Clinical study has shown in-
creased sensitivity and specificity.

Even though the concept is very effective, the detection
of the half power point is still relied mostly on human
observation. In another word, by just “looking” at the

1Electricai and Computer Engineering Department, University of
Tennessee, Knoxville, TN 37996, USA, Email: hqi@utk.edu

2Bioyear Group, Inc. 10618 Rockley Rd., Houston, TX 77099
Email: ubyg@bioyear.net ;

amount of growth of white pixels between adjacent slices,
the radiologists make a decision whether a specific slice has
crossed the half power point and thus derive the depth of
the heat source. Similarly, by observing the growth pat-
tern of the white pixels, different tissues within the human
body can be identified as well. The biggest problem with
human-based diagnosis is its inconsistency among differ-
ent radiologists and the amount of time spent in diagnosis.

In this paper, we use a synthetic example to demon-
strate how slicing works and the effectiveness of an auto-
matic approach for the detection of half power point based
on shape analysis.

II. AuromMaTic DETECTION OF HALF PowER POINT

Figure 1 shows a synthetic example of how slicing works. -
The image is taken from a piece of pork fat. An electric
bulb is lit and inserted at the center of the pork fat as a
heat source such that we can control the location of the
heat source. “White” represents the highest temperature
and “black” the lowest. First of all, an appropriate tem-
perature needs to be found such that white pixels at the
center of the pork fat start to show up in the next slice.
We use “initial state” to refer this image. Each of the fol-
lowing slicing process decreases the highest temperature
in the color-map by 0.1°C (e.g. the threshold is lowered
by 0.1°C), such that more white pixels can appear. If we
come to a point where the increment of the white pixel is
dramatic, the half power point is the slice before it. In the
example, the increment of the radius of the white cluster
is much larger between slice 3 and 4 than previous incre-
ments. The depth of the bulb is thus 3cm, which is the
same as the ground truth.

Even though the ground truth in the above simulation
says that the heat source is 3cm in depth, and that ezperi-
enced radiologists are able to identify it at the right slice,
it is still hard to convince most observers why the half
power point is not at slice 1 or slice 2 since the growth of
white pixels can also be described as “dramatic” depend-
ing on what your definition of “dramatic” is. In another
word, there is quite a bit of ambiguity existed in the diag-
nosis. A quantitative measurement of the growth rate is
needed to provide more objective criteria for deriving the
depth of the heat source. We still use the synthetic experi-
ment as an example to show how the automated approach
works. We derive several shape descriptors and study the
change of these descriptors over slices to help identify the
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initial slice I slice 2 slice 3  slice 4
state

Fig. 1. Different slices from the pork fat experiment.

half power point.
A. Thinness

There are two definitions for thinness (T, and Tp,): T, =
P?2/A—4rm,and Ty = D/A. P, D, and A are the perimeter,
diameter, and area of the segment, respectively. Perimeter
is a count of all pixels in the segment that are adjacent
to a pixel not in the segment. Diameter describes the
maximum chord - the distance between those two points
on the boundary of the segment whose mutual distance is
maximum [3]. Here, we use the length of the major axis to
estimate the diameter. Area is a count of all pixels within
the segment.

B. Minimum Aspect Ratio (MAR)

MAR is the length/width ratio of the minimum bound-
ing rectangle of the segment. We use the ratio between

the length of major axis and minor axis to estimate the
MAR.

C. Principal Component Analysis (PCA)

PCA is a popular method used to derive the major axis
and minor axis of a segment. The axes are characterized
by the eigenvectors {direction of the axes) and eigenvalues
(length of the axes) of the covariance matrix of the seg-
ment. The growth rate of the major axis can be used to
identify the half power point, while the thinness and MAR
can be used to describe the shape of the heat source. The
shape of blood vessels should have a much larger thinness
and MAR measurements than the shape of a tumor.

III. EXPERIMENTAL RESULTS

We first calculate the length of the major azis to study
the growth pattern of the heat source between different

slices, as shown in Fig 2. We can see that the length-

increases linearly from slice one to slice two to slice three.
Between slice three and slice four, the increasing rate (or
the slope of the line segment) is much larger than those of
the first three slices. Therefore, by comparing the growth
rate of the length of the major axis, we can have a very
effective and objective criterion.

We then calculate the thinness and MAR of the heat
source between slices. These two profiles, along with the
length of major axis are shown in Fig. 3. From the three
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Fig. 2. The length of the major axis vs. different slices. Note:
the dash line is plotted for comparison. The slope of the line
segments is the growth rate.

profiles, we can see that for potential tumors, the MAR
stays roughly the same, while thinness changes irregularly.
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Fig. 3. Change of thinness, MAR and major axis vs. slices.

V. SUMMARY

Automated detection of the depth of heat source is a
challenging problem. First of all, a segmentation algo-
rithm needs to be developed to identify the heat source.
Then shape analysis techniques can be deployed to char-
acterize the growth pattern. However, human body is a
very complicate biological object, different tissues over-
lap with each other, making it difficult for segmentation.
Some preliminary results reported in this paper show the
effectiveness of using shape analysis to automate the de-
tection of half power point and thus the depth of the heat
source.
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DETECTING BREAST CANCER FROM THERMAL
INFRARED IMAGES BY ASYMMETRY ANALYSIS

Hairong Qi, Ph.D.
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This project started in August, 2001. It is a research effort that helps define thermal infrared
(TIR) imaging as a diagnostic tool in early detection of breast cancer, which can be used as
a complementary to tradmonal mammography

Research has shown that if detected earlier (tumor size less than 10mm), the breast cancer
patient has an 85% chance of cure as opposed to 10% if detected late. TIR imaging, as a
non-invasive, non-ionizing imaging modality, can provide functional information about the
cancer cell that is not easily measured by other methods like X-ray radiology and CT that
primarily provide information on the anatomical structures.

TIR images the heat emanating from the heat source, transported by the radiation and picked
up by the Infrared (IR) on the surface. Cancerous tissue absorbs 5 — 10 times more glucose
and liberates less energy than the normal cells. The high metabolic activity keeps the cancer
cell at a higher temperature than the normal cell. Therefore, tumors of the breast induce
abnormalities in skin temperature which can be detected by TIR.

One of the popular methods for breast cancer detection is to make comparisons between
contralateral images. When the images are relatively symmetrical, small asymmetries may
indicate a suspicious region. In TIR imaging, asymmetry analysis normally needs human
interference because of the difficulties in automatic segmentation. In order to provide a
more objective diagnosis result, we propose an automatic approach to asymmetry analysis in
thermograms. It includes automatic segmentation and supervised pattern classification.
Hough transform is used to extract the four feature curves (the left and right body
boundaries and the parabolic-shaped lower boundaries of the breasts) that uniquely segment
the left and right breasts. Upon segmentation, statistical features (moment measurements of
the local histogram) are derived from both segments. Ratios between the corresponding
feature values from each segment are used as inputs to the supervised learning methods (k-
Nearest-Neighbor and Maximum Posteriori Probability) for classification.

Experiments have been conducted based on images provided by Elliott Mastology Center
(Inframetrics 600M camera) and Bioyear, Inc. (Microbolometer uncooled camera).

The U.S. Army Medical Research and Materiel Command under DAMD17-01-1-0640
supported this work.




Early Detection of Breast Cancer using Thermal Texture Maps

Hairong Qi', Phani Teja Kuruganti!, Zhongqi Liu?

Abstract— This paper focuses on the discussion of using
thermal infrared imaging (TIR) in early detection of breast
cancer. We use the term thermal texture maps to represent
the images captured from TIR imaging. Even though the
heat emanating onto the surface from the cancerous tis-
sue can be successfully modeled using the Pennes bio-heat
equation, the complexity of the boundary conditions associ-
ated with the biological body makes it impractical to solve
the inverse problem. This paper presents a new method for
analyzing & thermal system based on an analogy to elec-
trical circuit theory; referred to as thermal-electric analog.
We demonstrate how the analog can be used to estimate
the depth of the heat source, and furthermore, help under-
stand the metabolic activities undergoing within the human
body. The method has been used in early breast cancer
detection and has achieved high sensitivity. Several breast
cancer study cases are given to show the effectiveness of
the method. On-going clinical study results are provided
as well.

I. INTRODUCTION

Temperature is a long established indicator of health.
The Greek physician, Hippocrates, wrote in 400 B.C. that
“In whatever part of the body ezcess of heat or cold is felt,
the disease is there to be discovered [8].” Before Galileo in-
vented thermoscope, the ancient Egyptians used fingers as
scanners to monitor the surface temperature of the human
body [8]. Modern development of the temperature mea-
surement has been in the area of thermal infrared (TIR)
imaging which does not need body contact. Based on
FDA’s definition, TIR imaging measures the heat ema-
nating from the heat source transported by radiation.

Infrared (IR) radiation occupies the region on the elec-
tromagnetic spectrum between visible and microwaves.
All objects in the universe emit radiations in the IR re-
gion as a function of their temperature. As an object gets
hotter, it gives off more intense infrared radiation, and it
radiates at a shorter wavelength [3]. Human eye cannot
detect IR rays, but they can be detected using the thermal
infrared cameras and detectors.

TIR imaging has been applied to a wide spectra of
applications, ranging from the military, industrial engi-
neering, to modern medicine. It is non-invasive and non-
destructive, which makes it a valuable tool to assist diag-
nosis.

1Electrical and Computer Engineering Department, University of
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This paper focuses on the discussion of using TIR imag-
ing in early detection of breast cancer. We use the term
thermal texture maps to represent the images captured
from TIR cameras. The application of IR imaging in
breast cancer study starts as early as 1961 when Williams
and Handley first published their results in the Lancet
[6]. However, the premature use of the technology and its
poorly controlled introduction of into breast cancer detec-
tion in the 70s have led to its early demise [4]. IR-based
diagnosis was criticized to generate a higher false-positive
rate than mammogram, and thus was not recommended
as a standard modality for breast cancer detection. There-
fore, despite its deployment in many areas of industry and
military, IR usage in medicine has declined {3]. Thirty
vears later, several papers and studies have been published
to reappraise the use of IR in medicine [4], [3] for the fol-
lowing three reasons: 1} We have much more improved
infrared technology. New generations of IR cameras have
been developed with much enhanced accuracy; 2) We have
much better capabilities in image processing. Advanced
techniques including image enhancement, restoration and
segmentation have been effectively used in processing IR
images; and 3} We have a deeper understanding of IR
images based on the patho-physiological approach.

Infrared imaging is a physiological test that measures
the physiclogy of the blood flow and behavior of the ner-
vous system by means of precise temperature measure-
ment. Unlike imaging techniques such as X-ray radiol-
ogy and CT that primarily provide information on the
anatomical structures, IR imaging provides functional in-
formation not easily measured by other methods. Thus
correct use of IR images requires in-depth physiological
knowledge for its effective interpretation.

All objects at temperature above absolute zero emit
electromagnetic radiation spontaneously, called the nat-
ural thermal radiation [3]. The heat emanating on to
the surface from the cancerous tissue and the surround-
ing blood flow can be quantified using the Pennes’ bio-
heat equation [7]. This equation includes the heat trans-
fer due to conduction through the tissue, the volumetric
metabolic heat generation of the tissue, and the volumet-
ric blood perfusion rate whose strength is considered to be
the arterio-venous temperature difference. The equation
is given as:

kAT — coun(T —T) + g =0 (1)




where k is conductivity, g,,, is volumetric metabolic rate of
the tissue, cpwy is the product of the specific heat capacity
and the mass flow rate of blood per unit volume of tissue,
T is the unknown tissue temperature, and T}, is the arterial
temperature.

In theory, given the heat emanating from the surface of
the body measured by IR imaging, by solving the inverse
heat transfer problem, we can obtain the heat pattern of
various internal elements of the body. Different methods
of solving the bio-heat transfer equation have been pre-
sented in literature {1], [2]. Although it is possible to cal-
culate the thermal radiation from a thermal body by ther-
modynamics, the complexity of the boundary conditions
associated with the biological body makes this approach
impractical.

This paper presents a new method for analyzing a ther-
mal system based on an analogy to electrical circuit the-
ory; referred to as thermal-electric analog. We demon-
strate how the analog can be used to estimate the depth
of the heat source, and furthermore, help understand the
metabolic activities undergoing within the human body.
The method has been used in early breast cancer detec-
tion and has achieved high sensitivity. Several breast can-
cer study cases are given to show the effectiveness of the
method. On-going clinical study results are provided as
well.

II. THE THERMAL-ELECTRIC ANALOG

As the living cells within a biological body are con-
stantly undergoing metabolic activities, the biochemical
and the physical metabolic processes generate heat. Thus
the amount of radiation on the surface of the human body
can reflect its metabolic rate. The theory underlying con-
ventional thermographic techniques as applied to cancer
is that the change of the pulse distribution around a can-
cerous area and the rate of metabolism are greater than
the general tissue, resulting in a higher temperature at the
skin surface [5].

Even though the temperature of the skin surface can be
measured, if the relationship between the surface temper-
ature and the emissions from inside of the body cannot
be established, the application of TIR imaging technique
is still limited. Pennes’ bio-heat equation models the pro-
cess of heat transfer but has its limits in practice. Thus, a
new method that does not require a direct solution to the
inverse heat transfer problem, the thermal-electric analog,

- comes into light.

Figure 1 illustrates the analogy between thermodynam-
ics systems and the electrical circuit, where the heat source
S inside the human body can be simulated as a battery
with voltage Ug, the heat loss inside the heat source can be

M2 {air) Hix.y)

Hix}

L

Fig. 1. The thermal-electric analog.

simulated as the heat loss on a resistor Rg. The tempera-
ture of the heat source can then correspond to the wvoltage
of the battery, and the heat current to the circuit current.
Similarly, we can map the heat source in the air (outside
the human body) as Uy, and the heat loss as B4. The
set of R;'s and C;’s correspond to the unit heat resistance
and heat capacity along each radiation line. The circuit
in Fig. 1 only shows the analogy for one radiation line. In
the study of breast cancer, it is reasonable to assume that
the medium between the heat source (§) and the surface
is homogeneous. Therefore, the radiation pattern sensed
by the IR camera at the surface should have a distribution
like Gaussian as shown in Fig. 1. The surface tempera-
ture H(z,y) corresponds to the output voltage U(z, y) can
then be calculated by Eq. 2.

E?:I R"

Ulz,y) =Us — = x (Ug-U 2
(’ y)=Us Rt Ra+ 5 & (Us -Ua) (2)
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where |m] represents the largest integer less than m, n
is the number of resistors used in the circuit, D is the
depth of the heat source, and Ry is the unit heat loss (or
the heat resistance rate) in a certain medium. Different
parts of human body have different heat resistance rate,
as shown in Table I.

body parts | heat resistance rate |

fatty tissue | 0.1 - 0.15°C/cm

muscle 0.2°C/cm

bone 0.3-0.6°C/cm
TABLE I

HEAT RESISTANCE RATE OF DIFFERENT BODY PARTS.




The thermal-electric analog provides a convenient way
to estimate the depth of the heat source. -

A. Estimation of the Depth of the Heat Source

The depth estimation is based on the assumption that
we can use Gaussian to model the distribution of the sur-
face temperature. Half power point is a useful property
of Gaussian distribution. It divides the total power en-
closed by the Gaussian into equally half. Therefore, if the
temperature (or voltage) at the maximum of the Gaus-
sian is T (or U), then the temperature (or voltage) at the
half power point is T/v/2 (or U/v/2) as shown in Fig. 2.
According to Eq. 2, we can derive the angle a that leads
to the half power point is approximately equal to 7/4.
Therefore, in the right triangle formed by SAB, SA = AB
where ‘SA is the depth of the heat source and AB is the
distance between the maximum of the Gaussian and the
half power point. In another word, if we can find the half
power point, we can derive the depth of the heat source.

If we slice the Gaussian from top to bottom at a fixed in-
terval, the increment of the radius in the horizontal direc-
tion would not have dramatic change until the half power
point is crossed. From Fig. 2, we can see that the rel-
ative increment of the radius between the first slice and
the second slice is 34 pixels, and 40 pixels between the sec-
ond slice and the third slice, but 116 pixels between the
third slice and the fourth slice. Therefore, the half power
point is at the position of the third slice. Each slice of the
Gaussian curve corresponds to a temperature deduction
of 0.1°C. For the application of breast cancer detection,
based on the heat resistance rate of fat tissues, the 0.1°C
temperature drop occurs over a lcm distance. Therefore,
by slicing (decreasing) the surface temperature at a certain
degree per step, we can find the half power point with the
accuracy at the level of centimeter {AB = AT/R; where
Ry is the heat resistance rate).

Fig. 2. Tllustration of half power point of Gaussian and the depth
of the heat source.

III. EXPERIMENTAL RESULTS AND ANALYSIS
A. Simulation Resulis

Figure 3 shows a synthetic example of how slicing works.
The image is taken from a piece of pork fat. An electric
bulb is lit and inserted at the center of the port fat as a
heat source such that we can control the location of the
heat source. The pseudo color-map is also shown in the
figure. “White” represents the ‘highest temperature and
“black” the lowest. First of all, an appropriate tempera-
ture needs to be found such that white pixels at the center
of the pork fat starts to show up in the next slice. We use
“initial state” to refer this image. In this example, the
initial state is' when the temperature is 20.50°C. Each of
the following slicing process decreases the highest tem-
perature in the color-map by 0.1°C (e.g. the threshold is
lowered by 0.1°C), such that more white pixels can ap-
pear. If we come to a point where the increment of the
white pixel is dramatic, the half power point is the slice
before it. In the example, the increment of the radius of
the white cluster is much larger between slice 3 and 4 than
previous increments. The depth of the bulb is thus 3em,
which is the same as the ground truth.

| B |
i

original initial
image state

|
| |

slice 2 slice 3 slice §

slice 1

Fig. 3. Simulation of slicing operation on pork fat.

B. Patient Data Analysis

Besides measuring the depth of the heat source, slic-
ing can also reveal the growth pattern of the white pixels.
Different tissues have different growth patterns. By ob-
serving this pattern, different tissues can be distinguished
as well. For example, the pixels of lymph nodes and tu-
mors should grow in a circular pattern, while the growth
pattern of blood vessel is along the direction of the blood
vessel.




A diagnosis protocol has been designed for early breast
cancer detection. Six steps are involved in this protocol:
« Step 1: Growth pattern of lymph nodes in the armpits
+ Step 2: Size of the abnormal area
+ Step 3: Appearance of the abnormal area
» Step 4: Vascular pattern
+ Step 5: Nipples and areola pattern
« Step 6: Dynamic diagnosis with outside agents (antibi-
otie, etc.)

Take the first step as an example, if the lymph nodes in
the armpits reveal one heat source with a depth less than
2cm, one abnormal sign (+) will be recorded; if two heat
sources appear with a depth less than 2cm and a bilateral
temperature difference greater than 0.2 degree, then two
abnormal signs (++) will be recorded, etc.

Figure 4 shows a patient with lobular carcinoma in the
left breast. From slicing, we observe the following abnor-
mal signs:

1. 2cm tumor surrounded by 4 blood vessels {(4-++);
2. White pixels surround the nipple in 3 slices (+++);
3. Nipple bilateral temperature difference is 0.8°C (+).

Inirisl state .
ino white pixel)

 alfom 1 - siics 2 alice 3
fuhite pixal appears) {more whits pixsis]  {crowssd half power potnt)

Fig. 4. Slicing of patient with lobular carcinoma in the left breast.

Figure 5 shows a patient diagnosed to have ductal car-
cinoma in her left breast. From slicing, we observe the
following abnormal signs:

1. Lymph node bilateral temperature difference is 0.8°C
(+4+++);

2. The tumor is 2cm from the surface (++);

3. The tumor is surrounded by five blood vessels (+++);
4. It takes less than three slices to have the white plxels
sarreund the nipple (++).

initlal stats
ino white pixel}
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Fig. 5. Slicing of patient with ductal carcinoma in the left breast.

1V. SUMMARY

Slicing is not a new technique. Radiologists have been
using slicing to observe IR images all the time. The in-

novations of this paper lie in the fact that it first reveals
the relationship between the pattern in each slice with
the metabolic activities within a patient’s body. Using
thermal-electric analog and half power point to estimate
the depth of tumor is just one way to reveal this relation-
ship. This technique and the resulting apparatus have
been patented [5]. We refer to the system as Bioyear sys-
tem or the Texture Mapping Imaging (TMI) system. Clin-
ical study has shown increased sensitivity ‘and specificity.
The concept has been validated in China for several appli-
cations, including breast cancer detection, ovarian cancer
detection. About 400,000 patients were scanned using the
Bioyear system in five years. Among them, 50,000 pa-

“tients did breast scan. There are 103 breast cancer cases

detected by TMI were proved by biopsy. Among these 103
cases, 92 cases also went through mammography. Mam-
mography missed 6 out of these 92 cases. 2 of the missed
tumor size is 2mm. The concept is also in the process of
validation in US and Canada, including the Ville Marie
Breast and Oncology Center in Canada, the Elliott Mas-
tology Center at Baton Rouge, LA, and NIH (Karposi Sar-
coma. / Angiogenesis). The system is also used for ovarian
cancer detection. Of the 77 cases studied, the error rate
of IR is 6% compared to the error rate of ultrasound or
CT scan which ranges from 3% to 5% where body contact
is needed and is a painful process.
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Asymmetry Analysis Using Automatic Segméntation and Classification
for Breast Cancer Detection in Thermograms ‘

Hairong Qi' , Jonathan F. 4I'Ié,ad2

Abstract— Thermal infrared imaging has shown effective
results as a diagnostic tool in breast cancer detection. It
can be used as a complementary to traditional mammog-
raphy. Asymmetry analysis are usually used to help detect
abnormalities. However, in infrared imaging, this cannot
be done without human interference. This paper proposes

" an automatic approach to asymmetry analysis in thermo-
grams. It includes automatic segmentation and pattern
classification. Hough transform is used to extract the four
feature curves that can uniquely segment the left and right
breasts. The feature curves include the left and the right
body boundary curves, and the two parabolic curves indi-
cating the lower boundaries of the breasts. Upon segmen-
tation, unsupervised learning technique is applied to clas-
sify each segmented pixel into certain number of clusters.
Asymmetric abnormalities can then be identified based on
pixel distribution within the same cluster. Both segmenta-
tion and classification results are shown on images captured
from Elliott Mastology Center,

Keywords— asymmetry analysis, breast cancer detection,
thermogram, Hough transform, pattern classification, un-
supervised learning

I. INTRODUCTION

Making comparisons between contralateral images are
routinely done by radiologists. When the images are rela-
tively symmetrical, small asymmetries may indicate a sus-
picious region. This is the underlying philosophy in the
use of asymmetry analysis for mass detection in breast
cancer study [2]. Unfortunately, due to various reason
like short of radiologists, fatigue, carelessness, or simply
because of the limitation of human visual system, these
small asymmetries might not be easy to detect. There-
fore, it is important to design an automatic approach to
eliminate human factors.

There have been a few papers addressing techniques for
asymmetry analysis of mammograms [2], [7], {8], [9], [10],
[11]. [3], [5] recently analyzed the asymmetric abnormal-
ities in infrared images. In their approach, the thermo-
grams are segmented first by operator. Then breast quad-
rants are derived automatically based on unique point of
reference, i.e. the chin, the lowest, rightmost and leftmost
points of the breast. In an earlier paper we published [6],
Hough transform is used to segment the image, and cur-
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Fig. 1. Procedure of automatic asymmetry analysis of thermogram,

vature analysis is proposed to identify the abnormalities.
This paper extends our work on using Hough transform
for segmentation. New experimental results are provided.
Instead of using curvature analysis which is very sensitive
to noise, this paper describes a pattern classification ap-
proach which uses unsupervised learning to identify abnor-
malities. k-means algorithm is applied on the segmented
images. ‘ ’ .
Testing images are obtained using the Inframetric
600M camera, with a thermal sensitivity of 0.05°K.

II. APPROACH

Figure 1 is a block diagram of the five procedures in-

. volved in the proposed approach: (1) Edge image detec-

tion by Canny edge detector; (2) Feature curve extraction
including the left and right body boundary curves, and
the two lower boundaries of the breasts. Hough trans-
form is used to detect the parabolic shaped lower breast
boundaries; (8) Segmentation based on the intersection
of the two parabolic curves and the line formed by the
two armpits; (4) Pattern classification using unsupervised
learning to group each pixel of the segments into certain
clusters; and (5) Pizel distribution of each cluster is ana-
lyzed and abnormalities can then be identified.

A. Edge detection by Canny edge deiecior

Edge image is first derived by using Canny edge detector
[1]. The standard deviation is chosen to be equal to 2.5
so that only strong edges are detected.




B. Feature curve extraction by Hough transform

There are four dominant curves appeared in the edge
image which we called the feature curves: the left and
right body boundaries, and two lower boundaries of the
breasts. The body boundaries are easy to detect. Diffi-
culties lie in the detection of the lower boundaries of the
breasts. We observe that the breast boundaries are gen-
erally in parabolic shape. Therefore, Hough transform [4]
is used to detect the parabola.

C.. Segmentation

Segmentation is based on three key points: the two
armpits (Pr, Pg) derived from the left and right body
boundaries by picking up the point where the largest
curvature occurs, and the intersection (O) of the two
parabolic curves derived from the lower boundaries of the
breasts. The vertical line that goes through point O and
is perpendicular to line P Pg is the one used to separate
the left and right breasts.

D. Unsupervised learning

Pixel values in a thermogram represent the thermal ra-
diation resulting from the heat emanates from the human
body. Different tissues, organs and vessels have differ-
ent amount of radiation. Therefore, by observing the heat
pattern, or in ancther word, the pattern of the pixel value,
we should be able to discover the abnormalities if there are
any.

Usually, in pattern classification algorithms, a set of
training data are given to derive the decision rule. All the
samples in the training set have been correctly classified.
The decision rule is then applied to the testing data set
where samples have not been classified yet. This classi-
fication technique is also called supervised learning. In
unsupervised learning, however, data sets are not divided
into training sets or testing sets. No a-priori knowledge
is known about which class each sample belongs to.

In asymmetry analysis, none of the pixels in the seg-
ment knows its class in advance, thus there will be no
training set or testing set. Therefore, this is an unsuper-
vised learning problem. We use k-means algorithm to do
the initial clustering. k-means algorithm is described as
follows:

1. Begin with an arbitrary set of cluster centers and assign
samples to nearest clusters;

2. Compute the sample mean of each cluster;

3. Reassign each sample to the cluster with the nearest
mean;

4. If the classification of all samples has not changed, then
stop, else go to step 2.

E. Within cluster pizel distribution

‘After each sample is relabeled to a certain cluster, the
cluster mean can then be calculated. The segmented im-
age can also be displayed in labeled format. From the
difference of mean distribution, we can tell if there is any
asymmetric abnormalities.

III. EXPERIMENTAL RESULTS

Testing images are obtained using the Inframetrics
600M camera, with a thermal sensitivity of 0.05°K. The
image are collected at Elliott Mastology Center. Results
from two testing images {Ir, nb) are shown here.

Figure 2 shows the intermediate results from edge de-
tection, feature curve extraction, to segmentation. From
the figure, we can see that Hough transform can derive
the parabola at the accurate location.

Figure 3 provides the histogram of pixel value from each
segment with 10-bin setup. We can tell just from the
shape of the histogram that Ir shows a more apparent
abnormalities than nb. However, }ustogram oniy reveals
global information.

Figure 4 fizsplays the classification results for each seg-
ment in its labeled format. Here, we choose to use four
clusters. The figure also shows the mean difference of
each cluster in each segmented image. From Fig. 4, we
can clearly see the much bigger difference shown in the
mean distribution or image Ir which can also be observed
from the labeled image.

IV. CoNCLUSION

This paper describes an automatic approach for asym-
metry analysis in thermograms to help identify abnormal-
ities. It includes an automatic segmentation using Hough
transform and an unsupervised pattern classification for
segment comparison. From the experimental results, we
can see that Hough transform can accurately extract the
feature curves, and k-means algorithm provides useful in-
formation in the analysis of abnormalities.
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reduction in distributed data mining,” C. Warren Neel Conference on the New Frontier
of Data Mining (DM), Knowledge Discovery (KD), and E-Business, Knoxville, TN,
June 22-25, 2002.

Y. Xu, H. Qi, “Performance evaluation of distributed computing paradigms in mobile
ad hoc sensor networks,” International Conference on Parallel and Distributed Systems
(ICPADS), Taiwan, December 2002.

H. Qi, Z. Qi, C. Wang, “Breast cancer identification through shape analysis in thermal
texture maps,” EMBS-BMES, October 2002.

P. T. Kuruganti, H. Qi, “Asymmetry analysis in breast cancer detection using thermal
infrared images,” EMBS-BMES, October 2002.

H. Qi, W. E. Snyder, W. A. Sander, “Blind consistency-based steganography for in-
formation hiding in digital media,” IEEE International Conference on Multimedia and
Ezpo, Lausanne, Swizerland, August 26-29, 2002,

X. Wang, H. Qi, “Face recognition using optimal non-orthogonal wavelet basis evaluated
by information complexity,” International Conference on Pattern Recognition, vol. 1
page 164-167, Qubec, Canada, August, 2002.

H

X. Wang, H. Qi, 8. S. Iyengar, “Collaborative multi-modality target classification in '
distributed sensor networks using mobile agent,” Information Fusion, pages 285-290,
Annapolis, MA, July 2002.

H. Qi, P. T. Kuruganti, Z. Liu, “Early detection of breast cancer using thermal tex-
ture maps,” IEEE International Symposium on Biomedical Imaging: Macro to Nano,
Washington, D. C., July, 2002.

H. Qi, “Feature selection and kNN fusion in molecular classification of multiple tu-
mor types,” International Conference on Mathematics and Engineering Techniques in

Medicine and Biological Sciences (METMBS), Las Vegas, June, 2002.

X. Wang, H. Qi, “Acoustic target classification using distributed sensor arrays,” Inter-

national Conference on Acoustics Speech and Signal Processing (ICASSP’02), Orlando,
Florida, May, 2002.

- Y. Tian, H. Qi, “Target detection and classification using seismic signal processing in
unattended ground sensor systems,” International Conference on Acoustics Speech and
Signal Processing (ICASSP’02), Orlando, Florida, May, 2002.
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H. Qi, J. F. Head, “Asymmetry analysis using automatic segmentation and classification
for breast cancer detection in thermograms,” IEEE Engineering in Medicine and Biology
Society Annual Conference (EMBS), Istanbul, Turkey, October, 2001.

H. Qi, X. Wang, S. S. Iyengar, K. Chakrabarty, “Multisensor data fusion in distributed
sensor networks using mobile agents,” Information Fusion, TuC2-11-18, Canada Au-
gust, 2001.

H. Qi, F. Wang, “Optimal itinerary analysis for mobile agents in ad hoc wireless sensor
networks,” The 13th International Conference on Wireless Communications, vol. 1,
pp.147-153. Calgary, Canada, July, 2001.

L. M. Tolbert, H. Qi, F. Z. Peng, “Scalable multi-agent system for real-time electric
power management,” IEEE Power Electronics Summer Meeting, July, 2001.

F. Wang, F. Gong, F. Wu, H. Qi, “Design and implementation of property-oriented
detection for link state routing protocols,” Proceedings of the 2001 IEEE Workshop on
Information Assurance and Security, pp. 91-99, United States Military Academy, West
Point, NY, June, 2001.

K. Chakrabarty, S. S. Iyengar, H. Qi, E. Cho, “Coding theory framework for target
location in distributed sensor networks,” IEEE International Conference on Information
Technology: Coding and Computing, April, 2001.

H. Qi, S. 8. Iyengar, K. Chakrabarty, “Distributed multi-resolution data integration
using mobile agents,” IEEE Aerospace Conference, vol. 3, pp.1133-1141, Big Sky, Mon-
tana, March, 2001.

H. Qi, W. E. Snyder, J. F. Head, R. L. Elliott, “Detecting breast cancer from infrared im-
ages by asymmetry analysis,” Proceedings of the 22nd Annual International Conference
of the IEEE Engineering in Medicine and Biology Society, Chicago, July, 2000.

H. Qi, W. E. Snyder, “Conditioning analysis of missing data estimation for large sensor
arrays,” IEEE International Conference on Computer Vision and Pattern Recognition,
v2, ppb65-570, Hilton Head Island, SC, June, 2000.

W. E. Snyder, H. Qi, W. Sander, “A Hexagonal coordinate system,” SPIE Medzcal
Imaging: Image Processing, Pt.1-2, pp716-727, February, 1999.

H. Qi, W. E. Snyder, “Lesion detection and characterization in digital mammography
by Bezier histograms,” SPIE Medical Imaging: Image Processing, Pt.1-2, pp1521-1526,
February, 1999.

H. Qi, W. E. Snyder, G. L. Bilbro, “Missing data estimation by separable deblurring,”
Proceedings for the IEEE International Joint Symposia on Intelligence zmd Systems,
May, 1998, pp348-353.

H. Qi, W. E. Snyder, G. L. Bilbro, “Comparison of mean field annealing and multireso-
lution analysis in missing data estimation,” Computer Vision - ACCV’98: Third Asian
Conference on Computer Vision, v1, pp722-729, Hong Kong, China, January 8-10, 1998.




Curriculum Vita 6

H. Qi, W. E. Snyder, G. L. Bilbro, “Using mean field annealing to solve anisotropic
diffusion problems,” IEEE International Conference on Image Processing, v3, 11997,
pp352-355. ‘ V

Invited Talks

H. Qi, Z. Liu, Z. Wang, “Breast Cancer Identification through Shape Analysis in Thermal
Texture Maps,” IEEE Annual EMBS Conference, Houston, TX, October 24-26, 2002.

H. Qi, P. T. Kuruganti, “Detecting Breast Cancer from Thermal Infrared Images by
Asymmetry Analysis,” Era of Hope, Department of Defense Breast Cancer Research
Program Meeting, vol. 1, p15-10, Orlando, FL, September 25-28, 2002.

H. Qi, Z. Liu, “Use of Thermal Texture Maps (TTM) in Breast Cancer Detection -
Bioyear Concept,” From Tanks to Tumors: A Workshop on the Applications of IR
Imaging and Automatic Target Recognition (ATR) Image Processing for Early Detection
of Breast Cancer, Arlington, VA, December 4-6, 2001.

Dissertation

H. Qi, A High-Resolution, Large-Area, Digital Imaging System, Ph.D. Dlssertatlon
North Carolina State University, August, 1999.

GRADUATE STUDENT SUPERVISION

Advisor - Ph.D. students: Xiaoling Wang, Yingyue Xu, Yang Liu.
Advisor - M.S. students: Phani Teja Kuruganti, Hongtao Du, Olawoye Oyeyele.
Advisor - M.S. graduates: Yuxin Tian (Sunimer, 2001)

Committee Member - Ph.D. candidates: Yan Zhang, David Page, Faysal Boughorbel, J.
Patrick McClanahan.

Committee Member - Ph.D. graduates: Yiyong Sun (Fall, 2002), Ambrose Ononye (Fall,
2001), Shaun Gleason (Summer, 2001), Jovan Ilic (Spring, 2001)

Committee Member - M.S. students: Venkatesh Bhaskaran

Committee Member - M.S. graduates: Jason S. Rudisill (Fall, 2002), Andrew R. Wilson
(Summer, 2002), Annapoorani Gothandaraman (Fall, 2001), Yupeng Zhang (Summer,
2001), Cheolha Pedro Lee (Spring, 2001), Priyanka Dasgupta (Fall, 2000)

PROFESSIONAL SERVICES AND HONORS

Professional Services

Program Committee and Session Chair on “Distributed Data Mining,” C. Warren Neel
Conference on the New Frontier of Data Mining (DM), Knowledge Discovery ( KD), and
E-Business, Knoxville, TN, June 22-25, 2002.
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Guest Editor, Distributed Sensor Networks for Real-time Systems with Adaptive Recon-
figuration. Special Issue of Journal of Franklin Institute, May, 2001.

Session Chair, IEEE International Joint Symposia on Intelligence and Systems, Rockville,
Maryland, May 21-23, 1998

Reviewer, IEFE Transactions on Computers, 2002.

Reviewer, Proceedings of the IEEE, 2002,

Reviewer, EURASIP Journal on Applied Signal Processing, 2002.
Reviewer, Journal of American Society of Information Science, 2001.
Reviewer, IEEE Transactions on Knowledge and Data Engineering, 2001.

Reviewer, The 9th International Conference on Advanced Computing and Communica-
tions (ADCOM), 2001.

Reviewer, IEEE Transactions on Multimedia, 2000

Reviewer, The World Multiconference on Systemics, Cybernetics and Informatics (SCI),
2000, 2001, 2002

Reviewer, Optical Engineering, 1999

Professional Organizations

Member, IEEE Engineering in Medicine and Biology Society, 2000 - present; Student
Member, 1997 - 1998.

Member, Sigma Xi, 2000 - present

University and Departmental Services

Secretary, The University of Tennessee Chapter of Sigma Xi, 2000-2002. Organizing the
Annual Sigma Xi Graduate Student Competition.

Judge, State Science Olympiad Competition, April, 2001.

Departmental Search Committee Member (Computer Engineering Area, Image Process-
ing Area), 2000, 2001, 2002, 2003.

Departmental Curriculum Committee Member, 2001

Honors and Awards

Science Alliance Faculty Award, University of Tennessee and Qak Ridge National Lab-
oratory, 2001.
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